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ABSTRACT: Owners or operators of offshore wind farms perform inspections to collect 
information on the condition of the wind turbine support structures and perform repairs if 
required. These activities are costly and should be optimized. Risk-based methods can be applied 
to identify inspection and repair strategies that ensure an optimal balance between the expected 
total service life cost of inspection and repair, and the achieved risk reduction. Such an 
optimization requires explicit modeling of repairs. In this paper, the impact of different repair 
models on the results of a risk-based optimization of inspection and repair strategies is quantified 
in a numerical example considering a jacket-type steel frame subject to high-cycle fatigue. The 
example showed that, in this specific application, there is no need for detailed modeling of the 
behavior of repaired welded connections. 

1 INTRODUCTION 

Supports structures of offshore wind turbines are subject to various deterioration processes, which 
may have an adverse effect on their performance. To maintain an adequate performance 
throughout a support structure’s service life, some of its components may have to be repaired. In 
a risk-based approach, repairs are planned such that their expected cost is optimally balanced with 
the achieved reduction in the expected cost of structural system failure (risk). To enable an 
improved condition-based or predictive planning of repairs, information on the condition of 
structural systems can be collected through inspections. They also come at a price and should 
therefore also be optimized. 

The problem of jointly optimizing inspections and repairs of deteriorating structural systems is a 
sequential decision problem (Raiffa and Schlaifer 1961; Kochenderfer 2015), because decisions 
are made at multiple points in time, at which different amounts of information are available. To 
solve this computationally challenging problem at the structural system level, Luque and Straub 
(2019) propose a framework based on a direct policy search, which originates from the field of 
artificial intelligence (Kochenderfer 2015). In this approach, system-wide inspection and repair 
strategies are defined in terms of decision rules which deterministically prescribe whether, what 
and how to inspect and repair conditional on all available information at the different decision 
times. For each defined strategy, the expected total service life cost consisting of the expected 
cost of inspection, repair and structural system failure is computed using Monte Carlo simulation 
(MCS) based on samples of potential inspection and repair histories. The optimal strategy among 
the pre-selected strategies minimizes the expected total service life cost. 

As part of the MCS, the time-dependent reliability of the deteriorating structural system is 
computed many times for different potential inspection and repair histories. The analysis accounts 
for system effects arising from (a) the correlation among deterioration states of different structural 
components, (b) the interaction between component deterioration and system failure and (c) the 
indirect information on the condition of structural components obtained by inspecting the 
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condition of some of the system’s components. The analysis also captures the effect of repairs. In 
the past, simple models, in which a repaired component is, for example, represented by a model 
identical to a new component and treated as stochastically independent of the component before 
the repair, have been utilized in risk-based planning of inspections at the component level (Straub 
and Faber 2006). To substantiate that simple repair models are also applicable to the risk-based 
optimization of inspection and repair strategies at the structural system level, the impact of 
different repair models on the outcome of such analyses is studied by means of a numerical 
example considering – in analogy to a jacket support structure – a jacket-type steel frame subject 
to high-cycle fatigue. 

2 RISK-BASED OPTIMIZATION OF INSPECTION AND REPAIR STRATEGIES 
USING DIRECT POLICY SEARCH 

The finite service life of a deteriorating structural system is divided into intervals 𝑗 = 1,… ,𝑚 
such that the 𝑗th interval corresponds to 𝑡 ∈ (𝑡𝑗−1, 𝑡𝑗]. The length of each interval is chosen to be 
one year (which is a typical choice). In each year 𝑗, a policy 𝜋𝑗 – a set of rules – is adopted that 
deterministically prescribes which actions should be taken conditional on the history of 
observations and actions up to that year. The set of all policies adopted in the different years 𝒮 =
{𝜋𝑗}𝑗=1

𝑚  is a strategy. 

Throughout a structure’s service life, different costs are incurred. The total service life cost 𝐶𝑇 
may be defined as the sum of the total cost of (1) launching the inspection campaigns 𝐶𝐶, (2) 
performing component inspections 𝐶𝐼, (3) performing component repairs 𝐶𝑅 and (4) structural 
failure 𝑅𝐹 (risk). It can be written in function of a strategy 𝒮 and corresponding probabilistic 
inspection data 𝐙 = [𝐙1

𝑇 , … , 𝐙𝑗
𝑇 , … , 𝐙𝑚

𝑇 ]𝑇 as: 

𝐶𝑇(𝒮, 𝐙)  = 𝐶𝐶(𝒮, 𝐙) + 𝐶𝐼(𝒮, 𝐙) + 𝐶𝑅(𝒮, 𝐙) + 𝑅𝐹(𝒮, 𝐙) (1) 

where 𝐙𝑗 are the probabilistic inspection data in year 𝑗. The expected value of the total service life 
cost for a strategy 𝒮 with respect to 𝐙 can be written as: 

𝔼𝐙[𝐶𝑇(𝒮, 𝐙)]  = 𝔼𝐙[𝐶𝐶(𝒮, 𝐙) + 𝐶𝐼(𝒮, 𝐙) + 𝐶𝑅(𝒮, 𝐙)] + 𝔼𝐙[𝑅𝐹(𝒮, 𝐙)] (2) 

The first term of the right-hand side of Eq. (2) is obtained as: 

𝔼𝐙[𝐶𝐶(𝒮, 𝐙) + 𝐶𝐼(𝒮, 𝐙) + 𝐶𝑅(𝒮, 𝐙)] 

 = ∫ [ ∑ [𝑐𝐶 + 𝑛𝐼,𝑖(𝒮, 𝐳) 𝑐𝐼 + 𝑛𝑅,𝑖(𝒮, 𝐳) 𝑐𝑅] ∙ 𝛾(𝑡𝑖) ∙ [1 − Pr[𝐹(𝑡𝑖)|𝒮, 𝐳]]

𝑛𝐶(𝒮,𝐳)

𝑖=1

] 𝑝(𝐳)d𝐳

Ω𝐙(𝒮)

 
(3) 

wherein 𝑝(𝐳) is the probability distribution of the inspection data 𝐙 with support Ω𝐙(𝒮), which is 
a function of the strategy 𝒮; 𝑛𝐶(𝒮, 𝐳) is the total number of inspections campaigns; 𝑡𝑖 is the time 
at the end of the interval in which the 𝑖th inspection campaign is performed; 𝑛𝐼,𝑖(𝒮, 𝐳) and 
𝑛𝑅,𝑖(𝒮, 𝐳) are the numbers of inspected and repaired components during the 𝑖th campaign; 𝑐𝐶, 𝑐𝐼 
and 𝑐𝑅 are the unit costs of launching an inspection campaign, inspecting and repairing a 
component; 𝛾(𝑡𝑖) = 1/(1 + 𝑟)

𝑡𝑖 is the discount function that discounts the cost to its present 
value, where 𝑟 is the discount rate; and 1 − Pr[𝐹(𝑡𝑖)|𝒮, 𝐳] is the probability of system survival 
up to time 𝑡𝑖 conditional on the inspection data 𝐙 = 𝐳 and corresponding repairs as determined 
by the strategy 𝒮. For highly reliable systems such as wind turbine support structures, 1 −
Pr[𝐹(𝑡𝑖)|𝒮, 𝐳] will be close to one. Hence, 𝔼𝐙[𝐶𝐶(𝒮, 𝐙) + 𝐶𝐼(𝒮, 𝐙) + 𝐶𝑅(𝒮, 𝐙)] may be 
approximated as: 
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𝔼𝐙[𝐶𝐶(𝒮, 𝐙) + 𝐶𝐼(𝒮, 𝐙) + 𝐶𝑅(𝒮, 𝐙)]

≈ ∫ [ ∑ [𝑐𝐶 + 𝑛𝐼,𝑖(𝒮, 𝐳) 𝑐𝐼 + 𝑛𝑅,𝑖(𝒮, 𝐳) 𝑐𝑅] ∙ 𝛾(𝑡𝑖)

𝑛𝐶(𝒮,𝐳)

𝑖=1

]

⏟                              
≈𝐶𝐶(𝒮,𝐳)+𝐶𝐼(𝒮,𝐳)+𝐶𝑅(𝒮,𝐳)

𝑝(𝐳)d𝐳

Ω𝐙(𝒮)

 (4) 

The expected total failure cost for a strategy 𝒮 is determined as: 

𝔼𝐙[𝑅𝐹(𝒮, 𝐙)]  = ∫ [∑𝑐𝐹 ∙ 𝛾(𝑡𝑗) ∙ [Pr[𝐹(𝑡𝑗)|𝒮, 𝐳] − Pr[𝐹(𝑡𝑗−1)|𝒮, 𝐳]]

𝑚

𝑗=1

] 𝑝(𝐳)d𝐳

Ω𝐙(𝒮)

 

= 𝑐𝐹∑𝛾(𝑡𝑗) [ ∫ Pr[𝐹(𝑡𝑗)|𝒮, 𝐳] 𝑝(𝐳)d𝐳

Ω𝐙(𝒮)

− ∫ Pr[𝐹(𝑡𝑗−1)|𝒮, 𝐳] 𝑝(𝐳)d𝐳

Ω𝐙(𝒮)

]

𝑚

𝑗=1

 

(5) 

wherein 𝑐𝐹 is the cost of system failure, Pr[𝐹(𝑡𝑗)|𝒮, 𝐳] is the conditional probability of system 
failure up to time 𝑡𝑗 and Pr[𝐹(𝑡𝑗)|𝒮, 𝐳] − Pr[𝐹(𝑡𝑗−1)|𝒮, 𝐳] is the conditional probability of system 
failure in (𝑡𝑗−1, 𝑡𝑗]. Both probabilities are conditional on the inspection data 𝐙 = 𝐳 and 
corresponding repairs as prescribed by the strategy 𝒮. 

The probability distribution of the inspection data 𝐙 can be factorized as 𝑝(𝐳) =
𝑝(𝐳𝑗:𝑚|𝐳1:𝑗−1) 𝑝(𝐳1:𝑗−1). Thus, the expected value of Pr[𝐹(𝑡𝑗)|𝒮, 𝐳] can be written as: 

∫ Pr[𝐹(𝑡𝑗)|𝒮, 𝐳] 𝑝(𝐳)d𝐳

Ω𝐙(𝒮)

= ∫ [ ∫ Pr[𝐹(𝑡𝑗)|𝒮, 𝐳1:𝑗−1, 𝐳𝑗:𝑚] 𝑝(𝐳𝑗:𝑚|𝐳1:𝑗−1) d𝐳𝑗:𝑚
Ω𝐙𝒋:𝒎

(𝒮)

] 𝑝(𝐳1:𝑗−1)d𝐳1:𝑗−1
Ω𝐙𝟏:𝒋−𝟏

(𝒮)

 

(6) 

The probability of system failure up to time 𝑡𝑗 depends only on the repairs performed before that 
time. Hence, the conditional expected value of Pr[𝐹(𝑡𝑗)|𝒮, 𝐳] with respect to 𝐙𝑗:𝑚 given 𝐙1:𝑗−1 =
𝐳1:𝑗−1 – the inner most integral in Eq. (6) – is equal to Pr[𝐹(𝑡𝑗)|𝒮, 𝐳1:𝑗−1]. From this it can be 
shown that 𝔼𝐙[𝑅𝐹(𝒮, 𝐙)] can be obtained as: 

𝔼𝐙[𝑅𝐹(𝒮, 𝐙)]  = ∫ [𝑐𝐹∑𝛾(𝑡𝑗) ∙ [Pr[𝐹(𝑡𝑗)|𝒮, 𝐳1:𝑗−1] − Pr[𝐹(𝑡𝑗−1)|𝒮, 𝐳1:𝑗−1]]

𝑚

𝑗=1

]

⏟                                      
=𝑅𝐹(𝒮,𝐳) (see also Luque and Straub 2019)

𝑝(𝐳)d𝐳

Ω𝐙(𝒮)

 
(7) 

The optimal strategy 𝒮∗ minimizes the expected total service life cost, i.e.: 

𝒮∗ = arg min
𝒮

(𝔼𝐙[𝐶𝑇(𝒮, 𝐙)]) (8) 

The identification of 𝒮∗ is challenging due to (a) the computation of the conditional system failure 
probabilities Pr[𝐹(𝑡𝑗)|𝒮, 𝐳1:𝑗−1] required to evaluate the conditional total failure cost 𝑅𝐹(𝒮, 𝐳), 
and (b) the large number of possible strategies. The first challenge is briefly discussed in 
Section 3. The second is addressed by employing a direct policy search that explores a subset of 
strategies, which is selected using a heuristic approach (Luque and Straub 2019). In this approach, 
a strategy is defined in terms of parameterized decision rules that prescribe actions at each 
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decision time given the entire history of observations and actions up to this decision. An example 
of such rules is provided in the numerical example in Section 4. 

Let 𝜽 be the heuristic parameters of the rules defining the strategy denoted by 𝒮𝜽. The optimal 
strategy 𝒮∗ is approximated by 𝒮𝜽∗, where 𝜽∗ is obtained as: 

𝜽∗ = arg min
𝜽

(𝔼𝐙[𝐶𝑇(𝒮𝜽, 𝐙)]) (9) 

𝔼𝐙[𝐶𝑇(𝒮𝜽, 𝐙)] is estimated using MCS: 

𝔼𝐙[𝐶𝑇(𝒮𝜽, 𝐙)] ≈
1

𝑛
∑ 𝐶𝑇(𝒮𝜽, 𝐳

(𝑖))
𝑛

𝑖=1
 (10) 

wherein {𝐳(𝑖)}𝑖=1
𝑛  are samples of the inspection data 𝐙 and corresponding repairs as prescribed by 

𝒮𝜽. They can, for example, be generated as described in (Schneider et al. 2018). 

3 RELIABILITY ANALYSIS OF DETERIORATING STRUCTURAL SYSTEMS 

In structural reliability, the reliability of deteriorating structural systems is assessed by means of 
physics-based probabilistic models that describe the deterioration processes and structural 
performance. The assessment requires the solution of a time-variant reliability problem because 
the demand on and the capacity of deteriorating structures change with time. In most applications, 
as discussed in (Straub et al. 2019), the deteriorating capacity of structural systems can be 
modeled as statistically independent of the demand. In this case, a time-discretized approach can 
be employed in which the time-variant reliability problem is transformed into a series of time-
invariant reliability problems. 

To illustrate this approach, consider the case in which the demand on the structural system can be 
described by a scalar load process {𝑆(𝑡)} and the structural capacity with respect to this load 
process is {𝑅(𝐗𝑅, 𝑡)}. The stochastic parameters 𝐗𝑅 include the parameters of the deterioration 
model. In a time-discretized approach, the service life of a structure is divided into intervals as 
described in Section 2 and an interval failure event 𝐹𝑗

∗ is defined as the event of system failure in 
(𝑡𝑗−1, 𝑡𝑗] neglecting the possibility that the system may have failed earlier (Straub et al. 2019): 

𝐹𝑗
∗ = {∃𝜏 ∈ (𝑡𝑗−1, 𝑡𝑗] ∶ 𝑅(𝐗𝑅 , 𝜏) ≤ 𝑆(𝜏)} (11) 

An exact computation of the corresponding probability Pr(𝐹𝑗
∗) requires the solution of a time-

variant reliability problem, but if {𝑆(𝑡)} and {𝑅(𝐗𝑅 , 𝑡)} are statistically independent, Pr(𝐹𝑗
∗) can 

be approximated as: 

Pr(𝐹𝑗
∗) ≈ Pr[𝑅(𝐗𝑅 , 𝑡𝑗) ≤ 𝑆𝑚𝑎𝑥,𝑗] (12) 

wherein 𝑅(𝐗𝑅 , 𝑡𝑗) is the structural capacity at the end of 𝑗th interval and 𝑆𝑚𝑎𝑥,𝑗 is the maximum 
demand in that interval. The distribution of 𝑆𝑚𝑎𝑥,𝑗 is determined by an extreme value analysis. 
Eq. (12) corresponds to a time-invariant reliability problem. 

The event of failure up to time 𝑡𝑗 is the union of the interval failure events up to that time:  

𝐹(𝑡𝑗) = 𝐹1
∗ ∪ 𝐹2

∗ ∪ …∪ 𝐹𝑗
∗ (13) 

An intuitive (but not necessarily computationally optimal) approach to compute the probability 
of 𝐹(𝑡𝑗) is to describe this event by the equivalent limit state function: 

𝑔1:𝑗(𝐗) = min
𝑖∈{1,…,𝑗}

𝑔𝑖(𝐗) (14) 
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where 𝐗 = [𝐗𝑅
𝑇 , 𝑆𝑚𝑎𝑥,1, … , 𝑆𝑚𝑎𝑥,𝑚]

𝑇 and 𝑔𝑖(𝐗) = 𝑅(𝐗𝑅, 𝑡𝑖) − 𝑆𝑚𝑎𝑥,𝑖 is the limit state function 
describing the 𝑖th interval failure event 𝐹𝑖

∗. The probability of 𝐹(𝑡𝑗) can then be evaluated by 
integrating the joint probability distribution of 𝐗 over the failure domain: 

Pr[𝐹(𝑡𝑗)] = Pr[𝐹1
∗ ∪ 𝐹2

∗ ∪ …∪ 𝐹𝑗
∗] = ∫ 𝑝(𝐱)

𝑔1:𝑗(𝐗)≤0

d𝐱 (15) 

The simplest and most robust method for solving the integral in Eq. (15) is MCS – a sampling-
based structural reliability method (SRM) (Ditlevsen and Madsen 1996). The disadvantage of 
MSC is its inefficiency in computing rare event probabilities. More efficient solution strategies 
for computing Pr[𝐹(𝑡𝑗)] are proposed in (Straub et al. 2019). 

Inspection data 𝐙 = 𝐳 provide direct or indirect information on (some of) the stochastic 
parameters 𝐗 of the limit state function 𝑔1:𝑗. In a probabilistic setting, the data can be applied to 
update the probability distribution of 𝐗 from 𝑝(𝐱) to 𝑝(𝐱|𝐳) using Bayes’ theorem: 

𝑝(𝐱|𝐳) ∝ 𝐿(𝐱|𝐳) 𝑝(𝐱) (16) 

wherein 𝐿(𝐱|𝐳) ∝ 𝑝(𝐳|𝐱) is the likelihood function describing the inspection data. The inspection 
data do not necessarily provide information on all parameters in 𝐗. Those parameters cannot be 
learned, i.e. the likelihood function 𝐿(𝐱|𝐳) is constant with respect to those parameters. 

The conditional probability of 𝐹(𝑡𝑗) given the inspection data 𝐙 = 𝐳 is obtained by replacing 𝑝(𝐱) 
with 𝑝(𝐱|𝐳) in Eq. (15): 

Pr[𝐹(𝑡𝑗)|𝐳] = Pr[𝐹1
∗ ∪ 𝐹2

∗ ∪ …∪ 𝐹𝑗
∗|𝐳] = ∫ 𝑝(𝐱|𝐳)

𝑔1:𝑗(𝐗)≤0

d𝐱 (17) 

Generally, closed-form solutions of 𝑝(𝐱|𝐳) are not available and most SRM cannot be applied to 
solve Eq. (17). Straub et al. (2016) propose a framework called BUS (Bayesian Updating with 
Structural reliability methods) that enables the evaluation of Eq. (17) with SRM without explicit 
knowledge of 𝑝(𝐱|𝐳). 

3.1 Deterioration modeling 

Deterioration is modeled at the structural component level, since probabilistic physics-based 
deterioration models are mainly available at this level. The relation between the deterioration state 
𝐃𝑖,𝑗  of component 𝑖 at time 𝑡𝑗 and the stochastic deterioration model parameters (which are here 
included in 𝐗𝑅) can be written in generic form as: 

𝐃𝑖,𝑗 = ℎ𝐷,𝑖(𝐗𝑅 , 𝑡𝑗) (18) 

Deterioration increases with time 𝑡𝑗, which implies that the structural capacity 𝑅(𝐗𝑅, 𝑡𝑗) decreases 
with 𝑡𝑗. Therefore, deterioration reduces, as expected, the reliability of structural systems. 

It is also important to realize that deterioration of different components in a structural system is 
dependent due to spatial variability and uncertain common influencing factors such as 
environmental conditions, production quality and material properties (e.g. Vrouwenvelder 2004). 
This dependence reduces the reliability of redundant structural systems and implies that an 
inspection of the condition of one component also provides information on the condition of other 
components. Stochastic dependence can be modeled by introducing correlations among the 
stochastic parameters of the models describing the deterioration state of the different components. 
For this purpose, hierarchical and random field models are commonly applied (e.g. Ying and 
Vrouwenvelder 2007; Maes et al. 2008).  
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3.2 Repair modeling 

Deteriorating components of a structural system can be repaired during the structure’s service 
life. In general, the deterioration state 𝐃𝑖,𝑗  of any component 𝑖 at time 𝑡𝑗 > 𝑡𝑘, which is repaired 
in the interval (𝑡𝑘−1, 𝑡𝑘], can be described by the same deterioration model ℎ𝐷,𝑖 but with a new 
starting time, i.e. 𝐃𝑖,𝑗 = ℎ𝐷,𝑖(𝐗𝑅 , 𝑡𝑗 − 𝑡𝑘). The stochastic parameters influencing deterioration of 
the repaired component are modeled by new random variables, which are jointly included in 𝐗𝑅. 
The dependence among the random variables representing the deterioration model parameters 
before and after repair is modeled by introducing additional correlations. In some cases, the model 
describing deterioration before a repair is replaced by a new model describing the deterioration 
after the repair. This could, for example, be necessary if the fatigue behavior of a component 
changes after a repair. 

4 NUMERICAL EXAMPLE 

The effect of different repair models is studied through a numerical example considering the steel 
frame shown in Figure 1. It has a service life of 20 years and consists of welded tubular steel 
members similar to a jacket support structure of an offshore wind turbine. The frame is subject to 
gravity and a time-varying lateral load, which is modeled by its annual maximum 𝑆𝑚𝑎𝑥,𝑗. In 
addition, the frame is subject to high-cycle fatigue at selected welded connections – the fatigue 
hotspots – indicated as red dots in Figure 1. The evolution of the size of the fatigue cracks at each 
hotspot is described by a fatigue crack growth model based on Paris’ law. The stochastic 
parameters of the model at each hotspot are the initial crack depth 𝐴0, the material parameter 𝐶, 
the scale parameter of the hotspot stress range distribution 𝐾 and the model uncertainties 𝐵Δ𝑆 and 
𝐵𝑆𝐼𝐹. The frame’s braces are modeled as being either in a functioning or not functioning state in 
function of the size of the fatigue crack at the hotspots. The structural capacity of the damaged 
frame with respect to the applied load is determined by pushover analyses based on a non-linear 
finite element model. Details of the fatigue, structural performance and inspection model, and the 
computational methods employed in this example are documented in (Schneider et al. 2017; 
Schneider et al. 2018). 

The parameterized rules that prescribe the actions in each year of the frame’s service life in 
function of the available inspection data and past repairs considered in this example are as follows 
(Bismut et al. 2017; Luque and Straub 2019): 

 

Figure 1. Steel frame. Red dots indicate fatigue hotspots. 
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1. Inspection campaigns are performed at fixed intervals Δ𝑡. 
2. An additional inspection campaign is launched if the annual system failure probability 

exceeds a threshold 𝑝𝑡ℎ. 
3. 𝑛𝐼 hotspots are inspected during each inspection campaign. 
4. The hotspots are prioritized for inspection according to an index proposed by Bismut et 

al. (2017), which is a function of a parameter 𝜂, the structural importance and fatigue 
reliability. 

5. A weld is repaired if a fatigue crack is indicated and measured to be deeper than 𝑎𝑅. 

Thus, the heuristic parameters defining the strategy 𝒮𝜽 are 𝛉 = [Δ𝑡, 𝑝𝑡ℎ , 𝑛𝐼 , 𝜂, 𝑎𝑅]
𝑇. The optimal 

parameters 𝛉∗ are determined through an exhaustive search among the following sets of parameter 
values: Δ𝑡 ∈ {4,8} [year], 𝑝𝑡ℎ ∈ {5 ∙ 10

−4, 10−3}, 𝑛𝐼 ∈ {1,… ,22}, 𝜂 = 1 and 𝑎𝑅 = 1 [mm]. For 
each state of 𝛉, 𝔼𝐙[𝐶𝑇(𝒮𝜽, 𝐙)] is approximated using MCS with 200 samples of inspection data 
𝐙 and corresponding repairs. The optimization considers the following parameter values for the 
cost model: 𝑐𝐶 = 1, 𝑐𝐼 = 0.1, 𝑐𝑅 = 0.3, 𝑐𝐹 = 10

3 and 𝑟 = 0.02.  

A welded connection with a fatigue crack can, for example, be repaired by grinding and 
subsequent filling of the groove by welding (e.g. Rodríguez-Sánchez et al. 2011). In the following, 
such a repair is model by two different models: 

1. Perfect repair: A repaired welded connection will not fail due to fatigue. 
2. Imperfect repair: The fatigue behavior of a repaired welded connection is described by 

the same crack growth model but with a new starting time. A new initial crack depth 𝐴0
′  

and material parameter 𝐶′ are introduced to characterize the repair. The new parameters 
are independent of all other deterioration model parameters and have the same marginal 
prior distributions as the original initial crack depth 𝐴0 and material parameter 𝐶. 

The estimated expected service life cost 𝔼𝐙[𝐶𝑇(𝒮𝜽, 𝐙)] in function of 𝛉 are shown in Figure 2. In 
both cases, the optimal strategy 𝒮𝜽∗ in characterized by 𝜽∗ = [Δ𝑡 = 8, 𝑝𝑡ℎ = 10

−3, 𝑛𝐼 = 7, 𝜂 =
1, 𝑎𝑅 = 1]

𝑇. The associated expected service life cost is 𝔼[𝐶𝑇( 𝒮𝜽∗)] = 4.9. 

5 CONCLUDING REMARKS 

Risk-based optimization of inspection and repair strategies for deteriorating structural systems 
depends on the availability of (a) deterioration and structural performance models, (b) inspection 

 

Figure 2. Expected total service life cost 𝔼𝐙[𝐶𝑇(𝒮𝜽, 𝐙)] in function of 𝛉 = [Δ𝑡, 𝑝𝑡ℎ , 𝑛𝐼 , 𝜂, 𝑎𝑅]
𝑇. Case (a) 

perfect repair. Case (b) imperfect repair. 
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models, (c) repair models, (d) cost models and (e) robust and efficient computational strategies. 
The computational strategy applied in this paper is based on a direct policy search and was 
originally proposed by Luque and Straub (2019). The main objective of this paper is to study the 
influence of repair models on the results of a risk-based optimization of inspection and repair 
strategies. To this end, a numerical study is performed considering a steel frame with similar 
properties as a jacket support structure of an offshore wind turbine. The frame is subject to high-
cycle fatigue. The example indicates that explicit modeling of fatigue failure following a repair 
has only a minor effect on the results. This is because the fatigue reliability of the welded 
connections is high (this is typically the case for steel support structures of offshore wind turbines) 
and thus the probability of repair is small. It follows that for the purpose of planning inspections 
and repairs of steel structures subject to fatigue a detailed modeling of the behavior of repaired 
welded connections is not required. This confirms similar findings by Straub (2014) who 
considered different repair models in the computation of the value of information of inspections 
of an individual welded connection. 
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